Structured Support Vector Machines for Noise Robust Continuous Speech Recognition

نویسندگان

  • Shi-Xiong Zhang
  • Mark J. F. Gales
چکیده

The use of discriminative models is an interesting alternative to generative models for speech recognition. This paper examines one form of these models, structured support vector machines (SVMs), for noise robust speech recognition. One important aspect of structured SVMs is the form of the joint feature space. In this work features based on generative models are used, which allows model-based compensation schemes to be applied to yield robust joint features. However, these features require the segmentation of frames into words, or subwords, to be specified. In previous work this segmentation was obtained using generative models. Here the segmentations are refined using the parameters of the structured SVM. A Viterbilike scheme for obtaining “optimal” segmentations, and modifications to the training algorithm to allow them to be efficiently used, are described. The performance of the approach is evaluated on a noise corrupted continuous digit task: AURORA 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

A Noise Robust Speech Recognition System Using Wavelet Front End and Support Vector Machines

Recent works in speech recognition technology, classification techniques is focused on models, such as support vector machines (SVMs), in order to improve the generalization ability of the machine learning for noisy environments. However kernel function plays a vital role in the generalization ability of the SVMs. This paper address, the issue of noise robustness for an Automatic Speech Recogni...

متن کامل

Robust Speech Recognition Using KPCA-Based Noise Classification

This paper proposes an environmental noise classification method using kernel principal component analysis (KPCA) for robust speech recognition. Once the type of noise is identified, speech recognition performance can be enhanced by selecting the identified noise specific acoustic model. The proposed model applies KPCA to a set of noise features such as normalized logarithmic spectrums (NLS), a...

متن کامل

Structured Support Vector Machines for Speech Recognition

Discriminative training criteria and discriminative models are two ešective improvements for HMM-based speech recognition. is thesis proposed a structured support vector machine (SSVM) framework suitable for medium to large vocabulary continuous speech recognition. An important aspect of structured SVMs is the form of features. Several previously proposed features in the eld are summarized in ...

متن کامل

Robustness of Phoneme Classification Using Support Vector Machines: a Comparison between Plp and Acoustic Waveform Representations

Robustness of phoneme recognition to additive noise is investigated for PLP and acoustic waveform representations of speech using support vector machines (SVMs) combined via error-correcting code methods. While recognition in the PLP domain attains superb accuracy on clean data, it is significantly affected by mismatch between training and testing noise levels. The classification in the high-di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011